Archives For health

alien bacteria

We’re using far too many antibiotics. That has been the cry from the FDA and the WHO for the last several years as more and more antibiotic-resistant strains have been found after they had colonized or killed patients. Of course these bacteria aren’t completely immune to our arsenals of drugs, they’re just harder to kill with certain antibiotics or require different ones, but a rather small, yet unsettling number, have required doctors to use every last antibacterial weapon they had available to even make a dent in their populations. There’s not much we can do because in effect, we’re fighting evolution. The more antibiotics we throw at the bacteria, the more chances we give for resistant strains to survive and thrive. Doctors are starting to prescribe less and the pressure on farmers to stop prophylactic use of antibiotics is mounting, but we’re still overdoing it and the problem is growing and in need of some very creative new solutions.

Enter a genetic engineering technique known as CRISPR-Cas9 which replaces DNA sequences that short snippets of RNA are encoded to identity with ones provided by scientists. It’s not new by any means, but this is the first time it has been used in an evolutionary experiment intended to stem the rise of antibiotic resistance. Israeli researchers essentially gave bacterial colony an immunity to a virus, but at the cost of deleting genes which gave it antibacterial resistance. The bacteria happily propagated the immunity as they grew while maintaining the new weaknesses to antibiotics which were only marginally effective on them before. There’s a real advantage for the bacteria to propagate this new mutation because the virus to which it was now immune was lethal, acting as the greater selective pressure, and the susceptibility to antibiotics just wasn’t an important factor, so the bacteria acted like it got a fair deal.

Even better, edits were made by a specially engineered virus, meaning you can, in theory, just infect bacteria-prone surfaces with it and demolish their antibiotic resistance, right? Well, yes, it would be possible. However, the researchers worry that new antibiotic resistant mutations can still evolve and that there’s no way to prevent the bacteria’s genetic drifts from accepting genes for viral immunity while holding on to its existing antibacterial mechanisms. But this technique is still useful for reducing the number of resistant bacteria or targeting strains with very well known resistance mechanisms to allow doctors to use existing antibiotics. Ultimately, what will help the most would be more research into new antibiotics, curtailing their use in doctors’ offices for any viral infection regardless of the patients’ complaints, and eliminating preventative use of animal antibiotics on farms. Still, research like this can still help us identify new resistant strains and give us a fighting chance to slow them down while we find new ways to fight them.

See: Yosef, I., et. al. (2015). Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria PNAS DOI: 10.1073/pnas.1500107112

neurons

Back in the day, I argued that if we were going to get serious about space exploration, we also had to budget for large, luxury spacecraft rather than just capsules in which we would cram the brave men and women we’d be sending to other worlds with a pat on the back for agreeing to deal with the discomfort and damage to their bodies. Among the reasons listed were the basic physiological problems of spending many months in zero gravity, and mental health hazards of boredom and cabin fever. But now there’s another very important point to add to the list. If you spend too much time out of the Earth’s magnetosphere, you will become less competent at the elementary tasks of exploration. Curiosity, focus, determination, situational awareness, the very traits that make humans such good generalists on our own world, and which robots can handle within very limited contexts, which is why we’d want to aid them when exploring new planets, all will become severely diminished after long-term bombardment by cosmic rays.

This is the result of a recent study which exposed mice genetically engineered to have neurons that glow under the right conditions, to lab-generated cosmic rays. After the equivalent of a few months worth of exposure to particles like ionized titanium and oxygen, the mice became a lot less curious, mentally sluggish, and learned slower. The results were comparable to dementia patients, and under the microscope, the reason was readily apparent. Cosmic rays attacked an inordinate number of dendrites, which are the parts of a neuron exchanging neurotransmitters with its neighbors. Fewer connections meant less efficiency and accuracy in communication, so it resulted in what amounts to reduced competency across the board. This is another reason to hold off on planning grand Mars missions. Damaging the minds of astronauts, perhaps for the rest of their lives, is too high of a price to pay just to get a flag-panting moment…

See: Parihar, V. et. al. (2015). What happens to your brain on the way to Mars Science Adv, 1 (4) : 10.1126/sciadv.1400256

coffee owl

Mornings are awful. Always have been, always will be, rousing you out of bed, interrupting your sleep in unhealthy ways, rushing you to work at ungodly hours during which you must navigate e-mails and other minutia while your mind shakes itself awake to do real tasks. Unless, you do what most people around you do and reach for the nearest legal stimulant to brush off all those early morning cobwebs. I’m talking about coffee, one of the most frequently consumed drugs in the world, bringing in over $30 billion in revenues from the 2.25 billion cups of coffee drank by people around the world each day, and supporting a network employing over 25 million. And as with every drug, there’s a natural dependency. Forgoing it means anxiety, shakes, cold sweats, headaches, irritability, fatigue, and a general foggy haze in which you struggle to operate. It’s a much less intense version of pretty much any other kind of “dope sick” addicts get when they’re unable to secure their fix. Yet, it’s sold openly, to anyone and everyone, at a profit.

What does that have to do with mornings though? Maybe nothing. Maybe everything. Think for just a moment why you have to go to work so early, especially when you’re not in the logistics, travel, or maintenance business where one could make the case for early mornings or working through the night. Why do you have to be in the office by 8 am or 9 am along with everyone? If you need your coffee fix to no longer feel like a zombie, that’s why. Mornings were invented for one, simple reason. To get you addicted to coffee. Industry shills known as “morning people,” a code obviously denoting the fiction of someone actually enjoying being forcibly woken up at the separation of the gluteal muscles of dawn, have convinced much of the developed world to set work schedules in a way that will maximize their boss’ ability to get you hooked on coffee, then encourage you to be stuck in a never-ending cycle of sleep deprivation to keep you coming for another fix, day in, day out, even when you can sleep in and don’t have to work.

And Big Coffee and its members like Starbucks, Petes, and Coffee Bean, are not the only ones making a profit off your addiction. They’ve allied themselves with Big Ag’s breakfast industry to sell you cereals, granola bars, yogurt, and other “breakfast food” as it’s denoted. Of course it’s not all there is to it. You see, many fast food chains and coffee stores sell breakfast foods that are highly caloric, containing significant amounts of saturated fat and sugar, which coupled with the sedentary lifestyle enforced by many workplaces often leads to weight gain, and that weight gain interferes with sleeping patterns that make people less tired. Basically, we’re looking at an elaborate, vicious cycle of addiction for corporate profit. We need to wake up to the injustice of mornings and petition Big Coffee to stop pushing companies to open early, as well as removing the addictive chemical caffeine from the vast majority of their offerings still containing it in doses as high as 436 grams. I will be putting together an official letter writing campaign and a petition calling for the end of our forced caffeine addiction on Change.org in the next few days.

Likewise, yours truly isn’t sitting back and just counting on these corrupt corporate behemoths, many with the same market caps and annual profits as Monsanto to roll over, and is in the final stages of a partnership with several vendors to offer a new, natural energy drink alternative for those who must start their day early. If we can’t hit Big Coffee in the media, we need to hit it in the only place it really cares about: the wallet. You wouldn’t be just buying an energy drink that helps you stay alert and awake, you’d be giving these corporate drug pushers the finger to say loudly and proudly that you don’t need their damn coffee and “breakfast food,” you can see all their tricks from a mile away, and you’re smarter than to just let them ensnare you. Even better, should you have any of those “reward cards” that encourage you to be a good little addict and come back for a discount on your next fix, why not make a video of you cutting such a card, or creatively destroying it in some pother way, upload it, then link to it in your entry in the petition when it will be up and running? I’m ready to take on mornings. Who’s with me?

woman vector

With the media fascinated by Bruce Jenner’s transition from male to female and Laverne Cox’s photo shoot for Allure intended to inspire others struggling with gender identity issues, there’s a rare discussion of what it means to be transgendered. More importantly, if someone decides to transition to another gender, what can science do to make this person feel comfortable in what would basically be a new body after all the hormone therapy and surgeries? And what can the kind of technology still in infancy, but barreling towards clinical testing, offer in the foreseeable future? Could modified viruses for gene therapy turn males into females and vice versa? Could printing new organs produce an entire new reproductive system? In short, would gene therapy and printed organs and tissues make the transition more complete?

Despite offering us a way of manipulating the fundamental building blocks of life, they would be dealing with an entire body which developed not just from reading the genome and translating the codons into proteins, but from environmental cues, triggers, and anomalies. Even using the same homebox genes to define our body plans doesn’t quite get you a full instruction set for a human body so changing these genes after the body is formed is unlikely to have much effect. Such genes are like Lego blocks you get to arrange once. Each gets you a finger, a toe, a foot, or a leg, etc. During development you could use chemical signals to tweak them and assemble them how you want. But after they’re finally locked into place, things are more of less done and the formed structures would need to be modified mechanically, i.e. surgically.

We don’t yet know if it’s possible to change a Y chromosome to an X, only that it’s possible for our modified viral agents to silence or promote gene expression. And even if we could, there’s not going to be a mechanism for a penis to suddenly become a vagina or the other way around because, again, these structures are now in place. Surgery would still be the only way to make this step of the transition until we can figure out some sort of nanotechnology to do this, though we could argue that this will also be a form of surgery, just a much less outwardly invasive one than scalpels and saws. And by now it should really go without saying that we couldn’t naturally induce a different reproductive system to grow. But what if we print one, or grow one, using the patient’s modified stem cells, then implant it? Would this work?

From an engineering standpoint, it seems like it would, and after extensive hormonal therapy, they might work as they should, and allow something as radical as a trans-man to impregnate his partner or a trans-woman to become pregnant or give birth. However, there’s a catch. We know how to make the organs but have no guarantee that such complex organs could grow in the lab and function without a hitch. Creating viable germ cells and supporting a gestation don’t seem so complicated to us at first blush because it seem so natural as to be troublesome and leads us to trying to figure out how to stop both until we want them to happen. But consider the fact that if we knew what’s necessary to support a pregnancy, we could create artificial uteri to allow premature babies to develop fully rather than place them in incubators to support them in development and hope for the best. A uterus grown in a lab would seem like a good shortcut at first blush, what ethics board would permit the necessary experiments for clinical studies?

So what’s the takeaway here? For those struggling with gender identity and wanting to make a transition to another sex, there’s a lot of promise in new medical technologies being developed today and on paper, it looks like a complete biological transition could be in the cards. But this technology is not quite there yet and there are so many questions to answer that it will be more than a decade at the very least before we can even think about using them in clinical practice. I would say though, that helping and studying transgender issues raises so many interesting and widely relevant questions, it would be a disservice to the future of medicine not to explore them because answering them will help us understand that does being male or female mean, as well as offer treatments to many reproductive conditions and anomalies, like infertility, ED, or even replace reproductive systems destroyed by cancerous tumors with a brand new one. In other words, transgender people could be a reproductive researcher’s Rosetta Stone…

metal gear solid surgeon

Remember the big news that an Italian surgeon was dead set on performing a head transplant on a human received an enthusiastic volunteer? Well, that story just got really, really weird this week, and yes, there is something more bizarre than an attempt at putting one person’d head on another person’s body. According to a conspiracy theory born on reddit and investigated by several gaming sites, Dr. Canavero might actually be doing this as a marketing stunt for Metal Gear Solid 5 from Konami. Not the surgery of course, but talking about it and getting the press worked up just so game designer Hideo Kojima can unveil his latest game. Some outlets wrote about this story in their usual fashion, omitting the steak for the sizzle, and missing the fact that people actually did ask Canavero head-on — hey, you try to resist when appropriate puns write themselves — about this, and not only did he deny the rumors, but promised to sue Konami for using his likeness without authorization and use the winnings to fund his research.

Of course this lawsuit is unlikely to go anywhere because according to a Belgian site for MGS, the doctor in the game bearing an uncanny resemblance to Canavero is actually Ian Moore, a UK-born actor based in Japan, who was definitely aware of the game, and was more than likely compensated for his appearance. That Moore and Canavero look so similar that they could be mistaken for brothers, surely wouldn’t be Konami’s concern according to the courts. Likewise, according to the gamers who spotted the similarity, MGS features a plot line about a surgeon performing a head transplant on Snake, but there’s no official word on whether this is the case, just a teaser in which some fans concluded this is what they were glimpsing. Kojima, known for teasing his fans, has only doused the flames in kerosine with a tweet of headless Snake bodies widely open to interpretation, and saying that the game deals with “taboo” topics.

Here’s my guess at what may be happening. One scenario is that Kojima was very aware of the controversial surgeon and is basically trolling the living hell out of Metal Gear Solid fans with all this teasing in which he winks, nudges, but never provides any real specifics, and wanted to do that from the start. The other possibility I see is very similar to it, but in which Kojima caught the TED talk by Canavero, made the connection between something important in his game, like say the question of giving Snake a robot body or whatnot, and decided to run with it to get free viral marketing done by game reporters. Finally, he could have changed a plot point in development and if there were no head transplants in MGS, there will be now. It wouldn’t be the first time the web ceased on some coincidence, spun an elaborate conspiracy theory, and inspired some big changes. But the bottom line is that Kojima definitely knows how to market games and if even a little pop sci blog like this is talking about his latest creation, that’s just proof of his talent…

cape verde

Despite the constant political challenges and bean counting nihilism, human spaceflight is still a routine event and no matter how much some want to relegate space exploration to robots, any way we look at it, the domain of space travel is not a human or robot proposition, but will always need to be a partnership. Ultimately, monetary considerations be damned, we want to explore and discover. It’s what made us who we are today and we’ll do it even if we have to merge with machines to do it, even if those modifications are almost inhumanly extreme, as long as they’re within the realm of plausibility. But as long as human explorers’ bodies will have organic tissues there will always be the specter of medical emergencies and the need for treatments, surgeries in extreme environments, and dealing with damage from radiation. Right now, if an astronaut is in dire need of emergency treatment the plan is to evacuate him or her and perform whatever procedures are necessary on Earth. Beyond our planet’s orbit, this will not be an option.

Considering the current plans to send humans to asteroids, back to the Moon, and eventually, towards Mars, NASA has been hard at work soliciting ideas for how to do everything from robot surgery, harness ultrasonic devices to help with treatment and diagnosis, and extreme ways of approaching treatment of radiation sickness and long term effects of elevated exposure to both cosmic rays and mutagenic solar particles. This is great news not just for space exploration, but for humanity in general, because radically new approaches to medical treatments will let us live longer and healthier lives. With surgery being a last resort replaced by high tech scanners and ultrasonic devices, lasers, and genetically engineered viruses tested through the rigors of life in radioactive vacuum of space, and what surgeries are performed meant for minimum collateral damage and rapid healing, we could treat more issues, and use far fewer antibiotics.

Imagine a world in which superbugs evolve slower, people would live longer and healthier, and we can fix conditions currently treated by a constant dose of doctors gravely nodding and back pats for enduring them. And of course, since many of these treatments would be designed for maximum effect with minimal or even nonexistent infrastructure, we could deploy them to help developed nations. But hold on, you may ask, why not help developed nations first since that’s your goal along with just better medical technology? Because helping developed nations is not the kind of simple proposition it’s often portrayed to be. It’s become a sport to castigate those who spend their wealth on humanity’s distant future instead of its poorest members and it’s an extremely safe bet to do so. But the reality of the situation is that pouring billions of dollars into unstable regimes with no accountability and perverse incentives solves little. Designing for the rigors of space frees us from the political constraints and forces us to be more creative.

When we know no help will come, ever, not just late, there will be no infrastructure other than a spacecraft around us, and failure to meet the challenge is certain death, evolutionary, halfway, compromised designs are not an option. Being able to then package the successful fruits of all that hard work and ship them into even the most remote wilderness would be huge, a massive game changer that could help billions live a better life. As bizarre as it sounds, basic research, driven purely by the need to accomplish something that by definition has to be efficient, quick, and effective in practice, not beholden to profit margins, shareholders, or patent wars may be much cheaper and exactly what we need to finally capitalize on the bleeding edge research we find being nurtured in startup and university labs today. The space program provided the case for integrated electronics and countless materials that make our modern world what it is, and it can also provide the know-how to drastically improve our lives here on Earth and in space.

[ illustration from Erik Wernquist’s Wanderers ]

futurama heads in jars

Italian surgeon Sergio Canavero has been planning to do something that sounds like a scene straight out of Frankenstein: transplanting a head onto a new body. He’s been trying to figure out how to do it for many years, publishing a paper detailing how he sees the procedure could work a bit over a year ago, and making his case to the medical community since then. As of a few days ago, however, his work has exploded into the mainstream because there is a public volunteer for this radical surgery, Valery Spiridonov, a Russian programmer suffering from a rare genetic condition which rendered him unable to walk and take care of himself. As he sees his options, a head transplant is the only chance he has to ever live a normal life, and there’s someone who says he will be ready to perform the procedure in two years. However, despite Canavero’s enthusiasm, much of the science he presents as settled is still not ready for prime time, and the procedure is more likely to kill the patient than give him a new body.

Basically, as the history of head transplant experiments shows, connecting a head to a brand new body is the easy part. Giving it control of this new body and avoiding rejection is the real struggle, and this is where Canavero and the majority of the medical community aren’t seeing eye to eye. Most surgeons have little doubt that Spiridonov would survive the surgery, it’s the subsequent inability to join the spinal cords and the tissue rejection that worries them. They’re not really concerned as to whether he would be able to walk or have a normal life afterwards, believing these questions to be irrelevant since they’re not sure he’ll survive more than a few days after the procedure. In fact, they’re betting that the whole idea will be dropped since the odds of Canavero actually being ready to do a head transplant in 2017 are virtually nil. And if we’d look at the broader medical context, this might never be a viable procedure anyway.

Here’s the problem. Patients already wait for years to get organ transplants. Can you imagine how long someone would have to wait for an entire donor body suitable for the operation? On top of being intact, it also has to be that of an otherwise healthy person compatible enough to reduce the risk of rejection, otherwise whatever organ failure, trauma, or illness that ended the donor’s life would kill the patient as well. We would have to be able to quickly and easily get the body into a healthy state, limiting potential donors to solely head trauma or stroke victims who are otherwise young and healthy. But as they get the body ready to receive a new head, there will be a different calculus to consider. Yes, they can give this body to a patient for a very risky experimental procedure unlikely to end well, or they could use the body for parts to give new organs and tissues to dozens of people, doing far less risky surgeries with high success rates and adding many quality years to those patients’ lives. Its a sad but clear choice.

Still, there is a reason why head transplants even came up as an idea. Some people basically need a new, well, body because nothing short of that would help them. Sadly, there is nothing medical science can do today for Spiridonov. We’re making strides towards 3D printed organs and implantable devices that can bypass damaged sections of spinal cords to allow paralyzed patients to walk again under their own power, as well as honing genetic engineering to treat a host of powerful cancers and some genetic diseases. But while there is light at the end of the proverbial tunnel for patients who could benefit from these advancements, they’re still several decades away from being new standards of care and will require countless trials and hundreds of billions of dollars from government grants and private companies to be readily available. It’s awful to say this, but for patients like Spiridonov, these potential cures will come too late and a lot of patients like him will succumb to their ailments before medical science can help.

Canavero is trying to help people and Spiridonov is trying to aid him in pioneering a hope for a normal life for those to whom nature didn’t give a fighting chance. Unfortunately, we’re still just now making a few baby steps towards the technologies they would need to be successful, and it’s our sad duty as scientific skeptics to point out that while all death is awful, some ways to die are far, far worse than others, and it would be more humane not to try head transplants. In the future, when we can rebuild bodies with advanced robotics, harmless viruses that can purge a genome of life-threatening defects, and 3D printed tissues, it may be possible for many would-be volunteers for a head transplant to end up living healthy, happy lives. But today, we are just too far away from making this a reality, and while volunteering to advance medicine should be praised, there are some cases where allowing an experiment to go forward, even when all the participants involved know the risks, would still be cruel. And that’s the bad thing about the real world. Sometimes, no matter how hard you try, you still won’t get a happy ending…

quantified self

With the explosion in fitness trackers and mobile apps that want to help manage everything from weight loss to pregnancy, there’s already a small panic brewing as technology critics worry that insurance companies will require you to wear devices that track your health, playing around with your premiums based on how well or how badly you take care of yourself. As the current leader of the reverse Singularitarians, Evgeny Morozov, argues, the new idea of the quantified self is a minefield being created with little thought about the consequences. Certainly there is a potential for abuse of very personal health metrics and Morozov is at his best when he explains how naive techno-utopians don’t understand how they come off, and how the reality of how their tools have been used in the wild differs drastically from their vision, so his fear is not completely unfounded or downright reflexive, like some of his latest pieces have been. But in the case of the quantified self idea being applied to our healthcare, the benefits are more likely to outweigh the risks.

One of the reasons why healthcare in the United States is so incredibly expensive is the lack of focus on preventitive medicine. Health problems are allowed to fester until they become simply too bothersome to ignore, a battery of expensive tests is ordered, and usually expensive acute treatments are administered. Had they been caught in time, the treatments would not have to be so intensive, and if there was ample, trustworthy biometric information available to the attending doctors, there wouldn’t need to be as much testing to arrive at an accurate diagnosis. As many doctors grumble about oceans of paperwork, logistics of testing, and the inability to really talk to patients in the standard 15 minute visit, why not use devices that would help with the paperwork and do a great deal of preliminary research for them before they ever see the patient? And yes, the devices would have to be able to gather data by themselves because we often tell little white lies about how active we are and how well we eat, even when both we and our doctors know that we’re lying. And this only hurts us in the end by making the doctors’ work more difficult.

That brings us full circle to health insurance premiums and requirements to wear these devices to keep our coverage. Certainly it’s kind of creepy that there would be so much data about us so readily available to insurance companies, but here’s the thing. They already have this data from your doctors and can access it whenever they want in the course of processing your claim. With biometric trackers and loggers, they could do the smart and profitable thing and instead of using a statistical model generated from a hodgepodge of claim notes, take advantage of the real time data coming in to send you to the doctor when a health problem is detected. They pay less for a less acute treatment plan, you feel healthier and have some piece of mind that you’re now less likely to be caught by surprise by some nasty disease or condition, and your premiums won’t be hiked as much since the insurers now have higher margins and stave off rebellions from big and small companies who’ll now have more coverage choices built around smart health data. And all this isn’t even mentioning the bonanza for researchers and policy experts who can now get a big picture view from what would be the most massive health study ever conducted.

How many times have you read a study purporting the health benefits of eating berries and jogs one week only to read another one that promotes eating nuts and saying that jogs are pointless with the different conclusions coming as a result of different sample sizes and subjects involved in the studies? Well, here, scientists could collect tens of millions of anonymized records and do very thorough modeling based on uniform data sets from real people, and find out what actually works and for whom when it comes to achieving their fitness and weight loss goals. Couple more data and more intelligent policy with the potential for economic gain and the gamification offered by fitness trackers, and you end up with saner healthcare costs, a new focus on preventing and maintaining rather than diagnosing and treating, fewer sick days, and longer average lifespans as the side effect of being sick less often and encouraged to stay active and fit, and you have a very compelling argument for letting insurance companies put medical trackers on you and build a new business model around them and the data they collect. It will pay off in the long run.

magazine kiosk

When an expansive article on GMOs became the lead story in Elle Magazine, it wasn’t exactly a shocker that the story got its science wrong and horribly abused quotes to create a controversy where one didn’t exist. In fact, it’s par for the course when GMOs are mentioned in publications not known for their scientific reporting. Just like conservative political outlets go out of their way to deny global warming and denigrate the scientists involved in climate modeling, generally left-leaning lifestyle magazines do whatever they can to cast some doubt on the viability of GMOs in a noxious mix of conspiracy-mongering and double standards. No matter how many tests looking for potential allergens or toxins are done over decades, the anti-GMO pundits declare that there aren’t enough studies of the modified crops’ safety and surely this means that Monsanto turned millions of people into their unwitting guinea pigs for the sake of profit.

Meanwhile, even a single experiment which claims to find some sort of a problem with GMOs, no matter how horribly done and how much the researchers conduct it threaten reporters who want a second opinion or ask questions, has to be held up as the definitive proof that we’re all being slowly poisoned by greedy tycoons. The reality is quite different, of course. GMOs are actually strictly regulated, unlike organic food, since each new protein or genetic modification is treated as a food additive and has to be cleared by an independent panel of experts and by the FDA to ever hit the market. By contrast, anything described as "natural" and used in organic food does not have to be subject to any studies thanks to the codification of the naturalistic fallacy into law and despite the fact that nature can be very, very deadly. However, it’s not all regulations, good science, and securing the food supply. GMO makers use and abuse the patent system to milk a hefty profit from every stage of their products’ lifecycles and bilk farmers.

But don’t expect a discussion about the patent system and biology in Elle because the story isn’t so much about GMOs as about the author and her quest to rid herself of allergies, transitioning into a standard storyline of a woman in search of truth. Though by truth what I really mean is an exploratory trip into the land of conspiracy theories because that’s what the readers want. It’s a story written for the magazine’s target demographic, which is why it’s first person and focuses on vague, scary-sounding concerns to keep readers hooked. And this is why the admonition given to this article after a fact check sounds a bit silly to put it mildly, as it laments the science abuse and rampant misquotes to create a controversy for the sake of eyeballs…

It represents a major setback for science journalism, and for consumers who rely on hugely popular lifestyle publications to make their way through complicated issues. Is GMO corn causing allergies or other disorders? Are GMOs a threat? Elle perpetuates a “controversy” that just doesn’t exist in the mainstream science or medical communities. Worse, it fans the flames of doubt and distrust that fuel unilateral opposition to a sophisticated technology that could improve global food security.

Here’s the thing. If people are getting their science information from the same magazines which tell them what shoes are in this season, or what celebrity is working on what new movie, we have much bigger problems than are being highlighted here. Why would anyone think that relying on the latest edition of Vanity Fair, or Esquire, or, yes, Elle, for the latest and greatest in important, everyday science is a good idea? Certainly, one doesn’t expect fashion tips and celebrity gossip in their edition of National Geographic. Likewise, why would people rely on fashion magazines to navigate important policy debates? The really scary thing is that despite most people singing all manner of praises to science and a STEM education in popular surveys, they by in large do not care about the science that actually gets done or why, and even worse, don’t want to care. And considering that, is it any wonder that publications that cater to people who only say they care to be scientifically literate focus on creating controversy, peddling conspiracies, and moving copies to charge advertisers more? The Elle story is just one symptom of a much bigger issue…

[ photo illustration of news kiosk in Zurich via Wikimedia Commons ]

noodly_horror_600

While we’re talking about chemophobia, here’s another area where a selective focus on health isn’t helping in the big picture: food. The cover story for the current edition of The Atlantic is an expansive, New Yorker style, 10,500 word case against chemophobic foodism that’s currently in vogue in many metropolitan cities. David Freedman’s thesis basically boils down to calling out foodies on their caloric hypocrisy while noting that the companies they demonize are working to cut down on calories in their most popular offerings, which could have huge downstream effects for tens of millions of people. And with obesity arguably being America’s biggest health problem, combating it could shave trillions off our healthcare expenditures. That’s a big deal, so focusing on only "wholesome, natural, farm-to-table" fare while relegating food conglomerates to the role of the foodie movement’s sworn enemies is shortsighted and naive. As you can imagine, there’s no shortage of detractors to Freedman’s indictment and many of them base their opposition on the very chemophobia he sites, recycling the same arguments he tries to dispel.

Of course the article itself isn’t without flaws, but arguing with its focus on noting out how foodie idols aren’t helping to reduce caloric intake, but instead jack up the price in the name of style or ideology misses an important point. You see, the foodies aren’t actually helping people lose any heft by substituting fast, cheap, fattening food with wholesome, fresh, simple dishes that are so aesthetically pleasing they’re bordering on gastronomic pornography, yet every bit as bad as all those Big Macs and fries. Their excuse? It’s better for you because it’s all wholesome! Disregard the terrifying amount of flour, butter, bacon, and sugar going into these recipes. They’re labeled organic and they’re not — gasp! — processed with chemicals. Oh and if you want to lose weight, don’t eat this often and stay active; because all this stuff is natural and organic it will burn off all the faster. But the fact of the matter is that it won’t. Remember the craze about the high fructose corn syrup and the call to replace it with natural sugar? There’s a reason why it died down. The science says that sugar is sugar and both HFCS and cane sugar are equally dangerous.

Couple this almost religious faith in the power of "wholesome and natural food" with a big dollop of affluence and advice like "don’t eat something with more than five ingredients or containing chemicals you don’t immediately recognize," and you get a classic situation in which a little bit of knowledge is a dangerous thing. Not only are foodies disregarding food that’s more immune to being left out unrefrigerated for a few hours and safer from germs and spoilage (that’s what the vast majority of those strange sounding chemicals in processed food do by the way), but they’re also paying premiums for what they do find acceptable. This is great for Whole Foods, or as it’s known in some places Whole Paycheck, but not so great for John and Jane Public who are now thinking that they’re priced out of eating healthy. Fresh, more local food that travels from farms to supermarkets and forks faster is actually a good thing. It’s less resource intensive and helps the food stay edible longer. But it’s also being sold at a premium instead of being the default for markets. Why? Because foodies are willing to pay extra and margins in the grocery business are slim to put it mildly. Like many "green, eco-friendly" products, food is being upmarketed.

Worst of all, a great deal of the foodie motivation behind spending more money and avoiding a gret swath of basic chemistry to keep food fresh and safe longer is useless when it comes to the big goal of fighting obesity. The chemicals are not making people fat. The tomato from a frozen warehouse and the tomato from a local farm won’t break down differently in someone’s stomach and fuel the body with different calories. Obesity is so much more complex than that. When you want to tackle the question of why people gain weight you have to also look past exercise and a sum total of calories. You also have to consider that Americans work too much, sit too much for their jobs, don’t get exercise breaks in their routine, try to cram some 20 hours of tasks into a 16 or an 18 hour day, have to drive everywhere, some have genetic predispositions for weight gain, and others have emotional problems that drive them to food, etc. If you want to tackle the country’s weight problem holistically, you don’t do it with bad science, throw money at it, or try to shame people who can’t afford to eat like a foodie to do so. You have to do a lot more.

People eat fast food because it’s convenient and yes, cooking it with higher quality ingredients while cutting out calories and improving flavor with judicious use of benign and helpful chemicals would go a long way. But we also need to encourage more mass transit, more urban lifestyles in growing cities to get more people walking, jobs that allow for more flexible schedules to get a bit of exercise into the day and break up the monotony of being chained to desks and office chairs, and teach coping strategies for an insane workload both at the office and at home. Fighting the scourge of obesity and its attendant health problems requires many years of work and we have good studies showing us how we can start doing it. Demonizing processed foods with naturalism and pseudoscience with an irrational fear of chemistry isn’t going to help. It’s just going to make some foodies feel like they’re doing good things for their health. A number of whom, I might add, flip out in terror if their food contains half a gram of aspartame, but think nothing of having botox injections. You know, injections of the deadliest toxin know to humans to paralyze their faces so they look younger by poisoning their muscles into submission until their crow’s feet are gone…