Archives For space exploration

self-steeping tea

All right, look Newsweek, I get it. You need a catchy title for a throwaway article, ideally one you can tie into recent events bubbling up on search engines to get those sweet, sweet hits. And it’s understandable that once you start off with that headline, you don’t want to disappoint all those readers who came in to read about people who believe that a flyby of Pluto was just a part of a complicated conspiracy. But at the same time, two idiots who can’t even articulate what it is that was actually conspired and why, and seem to have no idea that there are two of them, aren’t a movement by even the most generous stretch of the imagination. No one except them believes that the New Horizons flyby didn’t happen and most of the people who comment on their videos do so to tell them how incredibly scientifically illiterate they are. For example, take this gem…

A man who goes by Crow Trippleseven questioned the initial Pluto images in a YouTube video last week… His argument: How is it that NASA’s images of Pluto, supposedly taken from a only few million miles away, are of poorer quality than those he took of Jupiter with his telescopic camera from 484 million miles away?

Well, let’s see, you have the lack of an adjustable focal length on the space probe to reduce the amount of moving parts and the fact that Jupiter has a diameter of 86,881 miles and comes as close as 365 million miles to us, while Pluto is 3 billion miles away at its closest and is just 1,473 miles across, or 8 times farther away, 58 times smaller, and fainter by a factor of thousands. So Crow expects a far smaller object, much farther away to be seen as clearly as the largest one in our solar system, gets schooled by countless people who actually realize this because they can do basic math and understand middle school optics, and his ignorance of basic science is proof of a conspiracy and comments calling him out on his imbecilic video are actually “death threats” in light of which he must keep his identity secret. But hold on, what is the actual conspiracy he’s trying to expose? Why is NASA staging a flyby of a would people are slightly curious about?

Maybe the truth is that NASA can’t do as much as we’ve been led to believe. It is a hard thing to know. Why does any government lie to its people? While there seems to be no simple answer, it seems to be the way of things. Governments lie and always have.

Ah, that clears it up. No, wait, no it doesn’t. He’s basically saying that he has no idea why there was a staged flyby of Pluto, what anyone had to gain form it, and what was the point of doing it in the first place, but dammit government lie and this must be a lie too. He’s just there to wake up the sheeple to the fact that there are conspiracies everywhere. His supposed counterpart in the movement of two dullards is just as clueless, basically just saying that he has no idea why a space agency would fake a mission but he knows they faked it. He also appears quite sure that the flouride in his local drinking water is poisonous and doesn’t understand that spacecraft can indeed propel themselves through a vacuum on top of re-tweeting pro-precious metal standard economic pamphlets based on what I’d like to call the peek-a-boo theory of economics, i.e. “if a currency isn’t backed by precious metal I can see and touch, it’s not real money.” So in short, he appears to be a somewhat bored rebel looking for a cause rather than for a clue.

However, this pair does teach us an important lesson. While some of us look to space to get an amazing little dose of inspiration and hopefully a glimpse of our future beyond humanity’s small, fragile blue cradle, others look to the heavens to find something else to complain about with the utmost confidence in their own genius, desperate to come across as incisive thinkers who have answers to life’s toughest questions and out-think the average person. These are people with a huge chip on their shoulders, people who want to be appreciated and admired for their feats of intelligence and insights, and whose eggshell-thin egos cannot process the fact that they more often than not end up coming across as the exact opposites of what they wanted to project. I’m sure they think of an article about them in Newsweek as long overdue recognition, while it really just let them humiliate themselves in public while calling them a movement to milk a few hits…

pluto on flyby

After finally getting a close look at Pluto and putting many decades of speculation to rest, there are three important things to keep in mind. First is that humans have now seen every world we once considered a planet in our solar system and have taken pictures and measurements that will give us decades of research to help us figure out where we came from and provide a basic foundation for figuring out if we are really alone in our tiny little corner of the cosmos. Second is that we need to keep thinking about how to properly define what a planet is, since Pluto shows pretty much all the signs of geologic activity we expected to find, and isn’t merely a rock which simply hangs around in space, absorbing the solar wind and asteroid impacts. And third, and in many ways very exemplary of how science can drive us to do odd but beautiful things, is that a container on New Horizons was carrying the ashes of the scientist who discovered Pluto, and in a way, the man who set the chain of events ending with this mission in motion, was there when the small world he spotted so many decades ago, was finally visited for the very first time.

People tend to lament spending money on basic science, curiosity-driven research which is not going to be obviously responsible for creating new jobs or founding new companies, but simply asks what is and why it works that way. But notice how many people were fascinated to see an icy, remote world, and how impressed they were that a 3 billion mile flight was planned to within several thousand miles between spinning alien objects we couldn’t see as anything more than a few faint pixels with out most powerful telescopes. We may have chained ourselves to desks in gray offices, toiling away on reports no one wants to read under the buzz of florescent lights as we watch the clock for quitting time, but deep inside we’re still explorers and wanderers. That’s why no matter how dullards and politicians who pander to them try to bankrupt space travel and exploration, we’ll always find a way to go. The urge is always there. The challenge attracts way too many curious minds. Clyde Tombaugh found a way to visit the outer solar system. He may have not been alive for it, but still, where there was a will to explore, we found a way…

pop culture aliens

If you don’t remember Chandra Wickramasinghe, here’s a quick refresher. Back in the day, the scientist worked with Fred Hoyle, the brilliant astronomer whose really poorly supported notions about the origins of life inspired many a creationist, and led him and a few of his colleagues on a hunt for evidence of panspermia, the idea that life originated somewhere in deep space and as our planet was finally settling down after its turbulent infancy, it settled here and evolved into all the species we know, and numerous ones we don’t. On the face of it, it’s not an inherently bad, or even wrong idea. It has actually been around since Darwin started wondering about the very same questions, and despite being occasionally criticized, it’s still popular in astrobiology. There does appear to be plenty of interesting evidence in favor of at least some building blocks of life coming form space, especially from asteroids and comets. This is why finding complex organic structures in the carbon layer of 67P wasn’t a surprise at all. In fact it was widely expected.

Yet according to Wickramasinghe, it’s proof that comet 67P is actually teeming with life and the scientific community at large needs to step up and announce that we found aliens. Despite how generously he’s treated by The Guardian’s staff writer however, he’s not a top scientist and his claim to expertise in astrobiology comes from declaring pretty much every newsworthy event in any way related to viral and microbial life as undeniable proof of aliens. He’s done this with mad cow, polio outbreaks, SARS, AIDS, and one of his fans recently declared that Ebola could have come from outer space. His proof of all this? Pretty much none. What papers he published to at least clear up how he thought life actually got its start and how it can travel across billions upon billions of light years so easily were in a vanity journal which was basically mocked into shutting down after failing to include a single entry of real scientific merit, and are absolutely inane. Hey, personally, I’m a huge fan of the panspermia hypothesis myself, but even in my very generous approach to reviewing astrobiology papers, what Wickramasinghe produced was absurd.

But of course, as all cranks eventually do, Wickramasinghe cried conspiracy after his work was battered by other scientists, declaring that astrobiology was a discipline under assault from the conservative geocentric cabal made up of old scientists hell bent on shutting down research on possible alien life forms in the wild. This came as a surprise to the flourishing researchers who had been studying extremophiles, theoretical alien biochemistry, and discovering more proof of organic molecules and water floating in space. You see, astrobiology is doing great and keeps advancing every day. Wickramasinghe, on the other hand, is not doing well because he doesn’t actually conduct any rigorous scientific experiments while desperately aspiring to be the person who goes into the history books as the scientist who discovered alien life. His constant attempts to stay in the media spotlight with his out-of-left-field proclamations and conspiracy theories are the typical self-serving machinations of a vain elder past his prime jealous that someone else is going to do what he aspired to accomplish. Honestly, it’s a sad way to end one’s career, to just chase after those doing the real work with outlandish soundbites and wallowing in self-pity.

pluto approach

According to some people, Pluto never stopped being a planet. While there was acrimony when the new definition was approved by the IAU, after a while it seemed that people got used to the idea that maybe, certain planet-like objects shouldn’t be called planets after all. However, as we approach Pluto with the fastest spacecraft ever built to study worlds like it, the person in charge of the mission’s science, Alan Stern, insists that it’s a planet and those who defined it otherwise lack a persuasive argument to call it anything else. According to him, if we start applying IAU’s definition to current planets, none would qualify because they can’t clear out their orbits and all have various stellar bodies crossing paths with them or following in their orbital wake. Jupiter is not even a proper planet because it attracts so many comets, Neptune can’t be a planet thanks to the fact the Pluto crosses its orbit, and Earth has a cloud of asteroid debris following it. And if none of these spheres is a planet, then what exactly is? But the catch here is that Stern may be emphasizing the letter of the definition over its spirit to score a rhetorical buzz-worthy point.

While he correctly says that a definition that could lead to hundreds of planets in our little solar system alone shouldn’t bother us because science is science and we need to call things as they are, rather than change definitions solely for the sake of convenience and textbook publication, how he interprets the requirement to clear one’s orbit is suspect. There’s math involved in how one determines if a planet cleared its orbital neighborhood and what is meant by cleared, and it should be pointed out that Stern co-authored a paper that contributed greatly to this concept in the first place some 15 years ago. Nowhere does it state that a planet must have a pristine orbit because such a thing is physically impossible in most solar systems. Instead, the idea is that it’s the dominant body in its orbit, and has enough scattering power to send incoming bodies away, which isn’t a perfect definition and could cause some semantic headaches in certain cases, but hardly as absolutist as Stern makes it sound. And the IAU debate raises a valid point. If we call anything round and orbiting a star a planet, how many planets would we have? At what point is there a difference significant enough between planets to require us to rethink the definition?

For what it’s worth, Stern does have an answer to that. Despite raging and fuming about how it all went down at the IAU meetings, he doesn’t want to get rid of the term dwarf planet. But in his mind, that’s just another type of a planet along with numerous other classifications he offered in his paper trying to define any planet’s orbital dominance. He sees us categorizing planets much like we do stars, from dwarfs to hyper-giants based primarily on mass, and each world falling at a certain point along a planetary Hertzsprung-Russell diagram. So what if we identify Ceres and Eris along with a whole host of Kupier Belt Objects as planets as long as they orbit the sun and have enough mass to become round? So what if we end up with 3,000 planets? Isn’t that better than arbitrarily drawing a cutoff at a number we can easily memorize solely for the purposes of nomenclature in classrooms? As we see with extrasolar systems, planets are weird things in all sorts of erratic orbits, so perhaps, how we define what is and isn’t a planet should reflect that in our literature. Plus imagine how big and colorful our model solar systems would get…

porn starlet

PornHub has a grand vision, a vision of a man and a woman having sex on camera just as they reach the edge of space and feel the grasp of our planet’s gravity loosen for half an hour. It’s a vision that’s been proposed to the only company that may have been willing to do it in 2008 and was promptly shot down, but PornHub was undeterred and started a crowdfunding campaign to bring zero gravity porn to the horny masses. Considering the challenges of sex without the help of gravity would be extremely amusing to watch, and if humans want to live in space, we’ll need to learn how to have sex on a spacecraft, I have no doubt this vision will be brought to life. Just not for PornHub, and not right now. No one is sending passengers into suborbital space and it’s simply not practical for the first commercial passengers to be a porn crew since no one from the crew will want to invest time in blocking, timing, and the necessary rehearsals. Just getting a few tourists floating around the cabin at the Karman line is going to be difficult enough as it is.

Now, a few dozen flights in, when the mechanics of the flights are settled and the crews can get more ambitious with their missions, this idea can actually work. Of course the problem for even the most accomplished and capable porn star would be the difficulty of getting an erection after the redistribution of fluids in zero gravity, and trying to actually maintain a position for cinematic intercourse when the slightest push will send them bouncing around the cabin. And there a lots of questions about how the money shot would be executed as well as whether 30 minutes can be enough to get a decent video, or whether multiple flights would be required. Perhaps they’d be interested in hiring Zero G to wrap their heads around the necessary blocking and physical limitations. None of these challenges are insurmountable, mind you, and they could actually do science a solid and perform research that would never be funded otherwise.

But again, this is a little premature. (Make your own jokes, I refuse.) We need to get people into suborbital space reliably in the first place, and then to orbital hotels where they could shoot just about anything and everything they’d want. Don’t get me wrong PornHub, although I know your porn business is your own real concern in this, you’re actually helping humanity in the long run, and your efforts to shoot naked people putting things into their own or others’ bodies could one day help start a family on the Moon or Mars. And really, your only problem here is being five to ten years ahead of your time. Though maybe you can also make your pitch a little less obvious as to its commercial value and a put in some things regarding advancing human understanding of sex beyond our planet, really sell it as an experiment, get in depth interviews with some blow by blow, and thrust by thrust commentary, and really advertise them when you try this again in probably six years or so when we have this whole commercial suborbital flight figured out.

[ illustration: porn starlet Ariana Marie ]

pluto render

New Horizons is just weeks away from finally flying by the most controversial object in our solar system and giving us a true picture of what it looks like. We suspect that Pluto is Triton’s twin, since both are large trans-Neptunian objects, icy would-be planets that never quite got enough mass to dominate their orbits, and since they both come from a similar blend of raw materials, it makes sense they would be very similar. There’s already evidence of Triton-like cryovolcanism taking place on Pluto and some proposals even argue that they were sojourners until Neptune managed to capture one of them and trap it in its orbit until in a few billion years, its new moon will fall and burn up in its vast atmosphere. But Pluto is more than a flash point for debates for what constitutes a planet. Since it was predicted to exist and successfully discovered, it was an incredibly fertile ground for conspiracy theorists and sci-fi authors, giving us the legends of the mysterious Anunaki, who supposedly built eldritch temples on the Cydonian Plains of Mars and colonized the Earth millennia ago, and the sci-fi horror genre as we know it.

Out there, in deep space, yet close enough to reach without world-ships or warp drives was an unknown planet that could be home to anything. It was Nibiru, the now desolate home of once thriving, hyper-intelligent aliens who fled to look for a more suitable home closer to the Sun and settled on Mars until it too died, forcing them to finally relocate to Earth and build Atlantis. Until we realized that it was a world much too small and far too cold to sustain any complex life we’d imagine could survive without requiring exotic chemistry by inner solar system standards, it was also Yuggoth, home of the twisted and bizarre Mi-go, and in future iterations of the mythos, all sorts of other nefarious creatures that cared little for humanity. Not knowing what Pluto really was and what it looked like gave conspiracy theorists inspiration, and writers the cover of eerie plausibility. But now we know that if anything is living on Pluto, it’s colonies of a still hypothetical bacterium that breathes hydrogen and needs liquid methane or ethane the same way life as we know it needs water, and the stories no longer work, not for planets in our solar system.

But just because Pluto is an icy desert doesn’t mean it’s any less interesting. If it’s a geologically active ice world like Triton, its eruptions provide a glimpse into planetary chemistry which helps describe a vast swath of worlds across the universe. There are bound to be countless dwarfs a lot like it since we have two of them just in one solar system. Likewise, if it has water ice in any significant quantity, it could be an extremely useful world for future explorers about to depart on a trip to interstellar space. It could become the last chance to fix up and refuel your spaceships when you venture out, and the first stop for maintenance when you return many years later, as well as a critical node in an interstellar communications network. No matter how soon the New Horizons flyby will be over, we’re not going to be done with Pluto. Now that it’s about to give up some of its secrets, this is only the beginning of our new relationship with it, this time not as the potential origin of malevolence and darkness, but as a destination for science and exploration, and a potential gateway to the rest of the galaxy. Don’t worry Pluto, we’ll see you soon…

neurons

Back in the day, I argued that if we were going to get serious about space exploration, we also had to budget for large, luxury spacecraft rather than just capsules in which we would cram the brave men and women we’d be sending to other worlds with a pat on the back for agreeing to deal with the discomfort and damage to their bodies. Among the reasons listed were the basic physiological problems of spending many months in zero gravity, and mental health hazards of boredom and cabin fever. But now there’s another very important point to add to the list. If you spend too much time out of the Earth’s magnetosphere, you will become less competent at the elementary tasks of exploration. Curiosity, focus, determination, situational awareness, the very traits that make humans such good generalists on our own world, and which robots can handle within very limited contexts, which is why we’d want to aid them when exploring new planets, all will become severely diminished after long-term bombardment by cosmic rays.

This is the result of a recent study which exposed mice genetically engineered to have neurons that glow under the right conditions, to lab-generated cosmic rays. After the equivalent of a few months worth of exposure to particles like ionized titanium and oxygen, the mice became a lot less curious, mentally sluggish, and learned slower. The results were comparable to dementia patients, and under the microscope, the reason was readily apparent. Cosmic rays attacked an inordinate number of dendrites, which are the parts of a neuron exchanging neurotransmitters with its neighbors. Fewer connections meant less efficiency and accuracy in communication, so it resulted in what amounts to reduced competency across the board. This is another reason to hold off on planning grand Mars missions. Damaging the minds of astronauts, perhaps for the rest of their lives, is too high of a price to pay just to get a flag-panting moment…

See: Parihar, V. et. al. (2015). What happens to your brain on the way to Mars Science Adv, 1 (4) : 10.1126/sciadv.1400256

cape verde

Despite the constant political challenges and bean counting nihilism, human spaceflight is still a routine event and no matter how much some want to relegate space exploration to robots, any way we look at it, the domain of space travel is not a human or robot proposition, but will always need to be a partnership. Ultimately, monetary considerations be damned, we want to explore and discover. It’s what made us who we are today and we’ll do it even if we have to merge with machines to do it, even if those modifications are almost inhumanly extreme, as long as they’re within the realm of plausibility. But as long as human explorers’ bodies will have organic tissues there will always be the specter of medical emergencies and the need for treatments, surgeries in extreme environments, and dealing with damage from radiation. Right now, if an astronaut is in dire need of emergency treatment the plan is to evacuate him or her and perform whatever procedures are necessary on Earth. Beyond our planet’s orbit, this will not be an option.

Considering the current plans to send humans to asteroids, back to the Moon, and eventually, towards Mars, NASA has been hard at work soliciting ideas for how to do everything from robot surgery, harness ultrasonic devices to help with treatment and diagnosis, and extreme ways of approaching treatment of radiation sickness and long term effects of elevated exposure to both cosmic rays and mutagenic solar particles. This is great news not just for space exploration, but for humanity in general, because radically new approaches to medical treatments will let us live longer and healthier lives. With surgery being a last resort replaced by high tech scanners and ultrasonic devices, lasers, and genetically engineered viruses tested through the rigors of life in radioactive vacuum of space, and what surgeries are performed meant for minimum collateral damage and rapid healing, we could treat more issues, and use far fewer antibiotics.

Imagine a world in which superbugs evolve slower, people would live longer and healthier, and we can fix conditions currently treated by a constant dose of doctors gravely nodding and back pats for enduring them. And of course, since many of these treatments would be designed for maximum effect with minimal or even nonexistent infrastructure, we could deploy them to help developed nations. But hold on, you may ask, why not help developed nations first since that’s your goal along with just better medical technology? Because helping developed nations is not the kind of simple proposition it’s often portrayed to be. It’s become a sport to castigate those who spend their wealth on humanity’s distant future instead of its poorest members and it’s an extremely safe bet to do so. But the reality of the situation is that pouring billions of dollars into unstable regimes with no accountability and perverse incentives solves little. Designing for the rigors of space frees us from the political constraints and forces us to be more creative.

When we know no help will come, ever, not just late, there will be no infrastructure other than a spacecraft around us, and failure to meet the challenge is certain death, evolutionary, halfway, compromised designs are not an option. Being able to then package the successful fruits of all that hard work and ship them into even the most remote wilderness would be huge, a massive game changer that could help billions live a better life. As bizarre as it sounds, basic research, driven purely by the need to accomplish something that by definition has to be efficient, quick, and effective in practice, not beholden to profit margins, shareholders, or patent wars may be much cheaper and exactly what we need to finally capitalize on the bleeding edge research we find being nurtured in startup and university labs today. The space program provided the case for integrated electronics and countless materials that make our modern world what it is, and it can also provide the know-how to drastically improve our lives here on Earth and in space.

[ illustration from Erik Wernquist’s Wanderers ]

roving on mars

By now, we’ve all heard that Mars One is a basically a scam. Well, maybe not a scam by intent, because it seems like the people behind it really did want to do something amazing and start a genuine Martian colony, but got caught up in their own hubris and are now desperately trying to salvage whatever’s left of their original mission. They don’t want to admit defeat after spending hundreds of thousands of dollars trying to figure out how to get to Mars, but the more they try to salvage their organization, they deeper of a hole they dig. But just because those of us who did not think this was going to work in any real capacity turned out to be right, we shouldn’t gleefully succumb to the pleasures of schadenfreude, because this failed experiment does have several important lessons for us to consider. Mars One was not going to succeed as a real colonization effort, but it was successful in starting a conversation about moving it from the world of sci-fi to real world implementations, and it showed us that people are really interested in the idea.

Certainly, we’re not going to get the majority of people in developed nations on board with a big space program dedicated to sending humans to other worlds. There are far too many would-be decision makers and politically influential blocs who are penny wise and pound asinine. They’re squirming when asked to approve $25 billion in space exploration, asking exactly who benefits, how many jobs will be created, the optics of debts, deficits, and poverty not being paid down for the sake of sending a robot to an alien environment, but will swiftly give trillions to banks whose business model is hard to distinguish from that of a professional poker player in Vegas. This is nothing new, in fact it’s been this way even when it was politically important to actually travel to other worlds, and it echoes today, when the pathologically self-absorbed decry Curiosity as an unforgivable waste of time, money, and resources because it can’t cure cancer and pay off the looming balance on their student loans. But they don’t need to decide our fate.

Mars One attracted tens of thousands of supporters because it promised something that jaded bean counters suffering either from the WIIFM disorder or the GE syndrome never could: hope for adventure. People have been working on a factory schedule for over a century and we don’t like it at all. We’ve been trying to break free of the rigid industrial structure almost since its very inception, and many of us are searching for a reprieve from the proverbial 9 to 5 to explore and broaden our horizons, just like our ancestors. What can be a better break from that daily, TPS report filled drudgery than a trip to another world, even if it is one way? Space exploration is an amazing way to channel the energies of those who always have a wandering eye, looking for a place to belong but never quite finding it, their potential wasted by our inability to direct it into a worthy, focused venture. Unfortunately, we don’t reward these pursuits enough to make it really worth many people’s while, which is why it’s so difficult to get more people to see the benefits of building new spacecraft and trying to create business models for space travel.

A sad reality I learned almost a year ago is that if you love space and want to be a part of it, it’s an expensive proposition, so much that after you finally start to cool down after a call from JPL, you have to really start weighing the benefits of a functional pay cut and dealing with the mood swings of a Congress filled with scientifically illiterate lawyers pandering to an electorate which convinced itself that you’re bilking them out of trillions to live the good life, against getting a shot at participating in something you’ve always dreamed of doing. Space exploration funded with a massive influx of private cash from the likes of Tito, Musk, or Bigelow, or outright crowdfunding, would attract more people and relieve the pressures of antagonistic overseers who have pretty much every possible incentive to punch down with you in their sights. Opening up the idea of a space program funded by enthusiasts big and small, and summoning popular support that just doesn’t get enough time in the media is something we should be actively pursuing.

Maybe we don’t use it for an overly ambitious colonization project by people who seemed way too sure of themselves and way too eager to protect their public image when they realized how many challenges they didn’t even know they had to cope with, maybe we use it for something a lot more mundane instead. Maybe we harness it for building experimental lunar outposts where we can develop the technology we need for Mars close to home. Maybe we use it to build small robotic swarms that can coordinate their actions to cover more territory, scouting for a planned human mission. Maybe we invest in the kind of medical and biological research we need to stay healthy while traveling between worlds. Or maybe we can pick and choose from all of that as an entire slate of space startups compete to create the most viable plans for concrete projects and combine them into entire missions. Mars One had a good idea, but it was too grand, with a very unrealistic timeline, and not enough know-how behind it. Why not scale this down to something more realistic and get more people involved in making things happen?

skylon

This might seem a little odd, but think about it. Single stage to orbit, or SSTO, space flight is the holy grail of aerospace design right now. If you can fly a plane into space, you can easily reduce launch costs by a factor of ten and still build a profitable business. Not only would you make it a lot more tempting for companies and universities to exploit space, but you can also offer shorter commutes between far flung, attractive destinations, and take space tourism to the next level. A big problem with SSTO however, is that it’s been tried before with few positive results because physics tend to get in the way of a smooth ascent to orbit. If you need to drag tons of oxidizer to incredibly high altitudes, you may as well just use a rocket. If you try to gulp down the incoming air, you’ll be dealing with blistering heat that will be monstrously difficult to compress and use to provide thrust. But the brainchild of engineer Alan Bond, Reaction Engines, has recently shown that it has a solution to a viable hybrid engine for the SSTO craft it wants to build.

By cooling the super-heated air coming into the intakes at the speed of sound with liquid helium, the SABRE engine can ignite a rocket motor while traveling at supersonic speed. Now mind you, this was only a test and we’re still a few years away from an engine ready to go to market, but a technical audit by the ESA found no flaws with the design. So while Reaction Engines may seem like it’s pitching something out of a science fiction movie, its technical chops seem to be in order and it’s not hiding behind invocations of or trade secrets when faced with tough questions. This is why they’ve gotten several grants from the ESA to keep working on SABRE. However, the final tally for the Skylon spaceplane fleet is estimated at $14 billion, several orders of magnitude more than government grants being offered and out of reach for the vast majority of private investors. So far, the plan seems to be to solicit another $4 million or so in funding to finish SABRE to then license the engine to other manufacturers and use the proceeds to start building Skylons. It’s certainly an interesting idea, but who exactly would want to license an SSTO engine?

How about SpaceX? Right now, to advance its strategy of licensing SABRE, the company has a derivative design called the Scimitar and bills it as already being 50% funded by the EU to bring intercontinental travel at Mach 5 to the world at large. Now, this would certainly help big airlines make more profits by flying trans-oceanic routes more often in theory, but in practice, the really, really burdensome regulations against supersonic travel thanks to the kind of NIMBYism which played a major role in preventing the supersonic travel revolution predicted by many futirists, as well as the lead time to finish, test, and prove these planes in operation, Reaction Engines may as well forget about Skylon for the next several decades. If it wants to raise money and interest for a spaceplane, it should focus on creating a spaceplane and selling the Scimitar to militaries as the child of the successful SABRE. Yes, SpaceX is working on its Dragon capsule for sending humans to the ISS, and it has rockets capable of getting there, but if it can offer rocket launches to deliver larger spacecraft into orbit, ready for a Skylon to deliver the crew, it can build a major competitive advantage. An extra 20 or 30 tons of cargo capacity can help enable a less spartan mission beyond Earth orbit, and Dragon could be an emergency habitat in deep space.

We should no longer have just one launch stack for sending humans into space, but instead, we need to mix and match our technology for optimal results. Doing heavy lifting with rockets while the orbit is given to SSTO craft and inflatable space stations for staging, assembly, research, or all of the above, is probably our best way to steadily expand upward into space. So maybe Elon Musk should consider working with Reaction Engines in the near future. The investment wouldn’t be small and returns on it won’t be quick, but they’ll not only be an investment in furthering how far SpaceX can go and what it can do for its clients, but also an investment in the infrastructure of the dawning space tourism and exploration industry. And judging from many proposals for the future of NASA and space travel in general, he’s rather likely to find deep-pocketed and willing partners to make it all work. After all, sticking to space capsules and heavy lift rockets for almost everything would be a huge technological step back to doing what we know rather than using all our past skills to build something for the future. Why should we circle back now, especially when there’s promising technology to make it happen just waiting for people with a big vision and the resources to make it come together, especially at a profit when all is said and done?