Archives For space travel

pluto on flyby

After finally getting a close look at Pluto and putting many decades of speculation to rest, there are three important things to keep in mind. First is that humans have now seen every world we once considered a planet in our solar system and have taken pictures and measurements that will give us decades of research to help us figure out where we came from and provide a basic foundation for figuring out if we are really alone in our tiny little corner of the cosmos. Second is that we need to keep thinking about how to properly define what a planet is, since Pluto shows pretty much all the signs of geologic activity we expected to find, and isn’t merely a rock which simply hangs around in space, absorbing the solar wind and asteroid impacts. And third, and in many ways very exemplary of how science can drive us to do odd but beautiful things, is that a container on New Horizons was carrying the ashes of the scientist who discovered Pluto, and in a way, the man who set the chain of events ending with this mission in motion, was there when the small world he spotted so many decades ago, was finally visited for the very first time.

People tend to lament spending money on basic science, curiosity-driven research which is not going to be obviously responsible for creating new jobs or founding new companies, but simply asks what is and why it works that way. But notice how many people were fascinated to see an icy, remote world, and how impressed they were that a 3 billion mile flight was planned to within several thousand miles between spinning alien objects we couldn’t see as anything more than a few faint pixels with out most powerful telescopes. We may have chained ourselves to desks in gray offices, toiling away on reports no one wants to read under the buzz of florescent lights as we watch the clock for quitting time, but deep inside we’re still explorers and wanderers. That’s why no matter how dullards and politicians who pander to them try to bankrupt space travel and exploration, we’ll always find a way to go. The urge is always there. The challenge attracts way too many curious minds. Clyde Tombaugh found a way to visit the outer solar system. He may have not been alive for it, but still, where there was a will to explore, we found a way…

porn starlet

PornHub has a grand vision, a vision of a man and a woman having sex on camera just as they reach the edge of space and feel the grasp of our planet’s gravity loosen for half an hour. It’s a vision that’s been proposed to the only company that may have been willing to do it in 2008 and was promptly shot down, but PornHub was undeterred and started a crowdfunding campaign to bring zero gravity porn to the horny masses. Considering the challenges of sex without the help of gravity would be extremely amusing to watch, and if humans want to live in space, we’ll need to learn how to have sex on a spacecraft, I have no doubt this vision will be brought to life. Just not for PornHub, and not right now. No one is sending passengers into suborbital space and it’s simply not practical for the first commercial passengers to be a porn crew since no one from the crew will want to invest time in blocking, timing, and the necessary rehearsals. Just getting a few tourists floating around the cabin at the Karman line is going to be difficult enough as it is.

Now, a few dozen flights in, when the mechanics of the flights are settled and the crews can get more ambitious with their missions, this idea can actually work. Of course the problem for even the most accomplished and capable porn star would be the difficulty of getting an erection after the redistribution of fluids in zero gravity, and trying to actually maintain a position for cinematic intercourse when the slightest push will send them bouncing around the cabin. And there a lots of questions about how the money shot would be executed as well as whether 30 minutes can be enough to get a decent video, or whether multiple flights would be required. Perhaps they’d be interested in hiring Zero G to wrap their heads around the necessary blocking and physical limitations. None of these challenges are insurmountable, mind you, and they could actually do science a solid and perform research that would never be funded otherwise.

But again, this is a little premature. (Make your own jokes, I refuse.) We need to get people into suborbital space reliably in the first place, and then to orbital hotels where they could shoot just about anything and everything they’d want. Don’t get me wrong PornHub, although I know your porn business is your own real concern in this, you’re actually helping humanity in the long run, and your efforts to shoot naked people putting things into their own or others’ bodies could one day help start a family on the Moon or Mars. And really, your only problem here is being five to ten years ahead of your time. Though maybe you can also make your pitch a little less obvious as to its commercial value and a put in some things regarding advancing human understanding of sex beyond our planet, really sell it as an experiment, get in depth interviews with some blow by blow, and thrust by thrust commentary, and really advertise them when you try this again in probably six years or so when we have this whole commercial suborbital flight figured out.

[ illustration: porn starlet Ariana Marie ]

neurons

Back in the day, I argued that if we were going to get serious about space exploration, we also had to budget for large, luxury spacecraft rather than just capsules in which we would cram the brave men and women we’d be sending to other worlds with a pat on the back for agreeing to deal with the discomfort and damage to their bodies. Among the reasons listed were the basic physiological problems of spending many months in zero gravity, and mental health hazards of boredom and cabin fever. But now there’s another very important point to add to the list. If you spend too much time out of the Earth’s magnetosphere, you will become less competent at the elementary tasks of exploration. Curiosity, focus, determination, situational awareness, the very traits that make humans such good generalists on our own world, and which robots can handle within very limited contexts, which is why we’d want to aid them when exploring new planets, all will become severely diminished after long-term bombardment by cosmic rays.

This is the result of a recent study which exposed mice genetically engineered to have neurons that glow under the right conditions, to lab-generated cosmic rays. After the equivalent of a few months worth of exposure to particles like ionized titanium and oxygen, the mice became a lot less curious, mentally sluggish, and learned slower. The results were comparable to dementia patients, and under the microscope, the reason was readily apparent. Cosmic rays attacked an inordinate number of dendrites, which are the parts of a neuron exchanging neurotransmitters with its neighbors. Fewer connections meant less efficiency and accuracy in communication, so it resulted in what amounts to reduced competency across the board. This is another reason to hold off on planning grand Mars missions. Damaging the minds of astronauts, perhaps for the rest of their lives, is too high of a price to pay just to get a flag-panting moment…

See: Parihar, V. et. al. (2015). What happens to your brain on the way to Mars Science Adv, 1 (4) : 10.1126/sciadv.1400256

cape verde

Despite the constant political challenges and bean counting nihilism, human spaceflight is still a routine event and no matter how much some want to relegate space exploration to robots, any way we look at it, the domain of space travel is not a human or robot proposition, but will always need to be a partnership. Ultimately, monetary considerations be damned, we want to explore and discover. It’s what made us who we are today and we’ll do it even if we have to merge with machines to do it, even if those modifications are almost inhumanly extreme, as long as they’re within the realm of plausibility. But as long as human explorers’ bodies will have organic tissues there will always be the specter of medical emergencies and the need for treatments, surgeries in extreme environments, and dealing with damage from radiation. Right now, if an astronaut is in dire need of emergency treatment the plan is to evacuate him or her and perform whatever procedures are necessary on Earth. Beyond our planet’s orbit, this will not be an option.

Considering the current plans to send humans to asteroids, back to the Moon, and eventually, towards Mars, NASA has been hard at work soliciting ideas for how to do everything from robot surgery, harness ultrasonic devices to help with treatment and diagnosis, and extreme ways of approaching treatment of radiation sickness and long term effects of elevated exposure to both cosmic rays and mutagenic solar particles. This is great news not just for space exploration, but for humanity in general, because radically new approaches to medical treatments will let us live longer and healthier lives. With surgery being a last resort replaced by high tech scanners and ultrasonic devices, lasers, and genetically engineered viruses tested through the rigors of life in radioactive vacuum of space, and what surgeries are performed meant for minimum collateral damage and rapid healing, we could treat more issues, and use far fewer antibiotics.

Imagine a world in which superbugs evolve slower, people would live longer and healthier, and we can fix conditions currently treated by a constant dose of doctors gravely nodding and back pats for enduring them. And of course, since many of these treatments would be designed for maximum effect with minimal or even nonexistent infrastructure, we could deploy them to help developed nations. But hold on, you may ask, why not help developed nations first since that’s your goal along with just better medical technology? Because helping developed nations is not the kind of simple proposition it’s often portrayed to be. It’s become a sport to castigate those who spend their wealth on humanity’s distant future instead of its poorest members and it’s an extremely safe bet to do so. But the reality of the situation is that pouring billions of dollars into unstable regimes with no accountability and perverse incentives solves little. Designing for the rigors of space frees us from the political constraints and forces us to be more creative.

When we know no help will come, ever, not just late, there will be no infrastructure other than a spacecraft around us, and failure to meet the challenge is certain death, evolutionary, halfway, compromised designs are not an option. Being able to then package the successful fruits of all that hard work and ship them into even the most remote wilderness would be huge, a massive game changer that could help billions live a better life. As bizarre as it sounds, basic research, driven purely by the need to accomplish something that by definition has to be efficient, quick, and effective in practice, not beholden to profit margins, shareholders, or patent wars may be much cheaper and exactly what we need to finally capitalize on the bleeding edge research we find being nurtured in startup and university labs today. The space program provided the case for integrated electronics and countless materials that make our modern world what it is, and it can also provide the know-how to drastically improve our lives here on Earth and in space.

[ illustration from Erik Wernquist’s Wanderers ]

skylon

This might seem a little odd, but think about it. Single stage to orbit, or SSTO, space flight is the holy grail of aerospace design right now. If you can fly a plane into space, you can easily reduce launch costs by a factor of ten and still build a profitable business. Not only would you make it a lot more tempting for companies and universities to exploit space, but you can also offer shorter commutes between far flung, attractive destinations, and take space tourism to the next level. A big problem with SSTO however, is that it’s been tried before with few positive results because physics tend to get in the way of a smooth ascent to orbit. If you need to drag tons of oxidizer to incredibly high altitudes, you may as well just use a rocket. If you try to gulp down the incoming air, you’ll be dealing with blistering heat that will be monstrously difficult to compress and use to provide thrust. But the brainchild of engineer Alan Bond, Reaction Engines, has recently shown that it has a solution to a viable hybrid engine for the SSTO craft it wants to build.

By cooling the super-heated air coming into the intakes at the speed of sound with liquid helium, the SABRE engine can ignite a rocket motor while traveling at supersonic speed. Now mind you, this was only a test and we’re still a few years away from an engine ready to go to market, but a technical audit by the ESA found no flaws with the design. So while Reaction Engines may seem like it’s pitching something out of a science fiction movie, its technical chops seem to be in order and it’s not hiding behind invocations of or trade secrets when faced with tough questions. This is why they’ve gotten several grants from the ESA to keep working on SABRE. However, the final tally for the Skylon spaceplane fleet is estimated at $14 billion, several orders of magnitude more than government grants being offered and out of reach for the vast majority of private investors. So far, the plan seems to be to solicit another $4 million or so in funding to finish SABRE to then license the engine to other manufacturers and use the proceeds to start building Skylons. It’s certainly an interesting idea, but who exactly would want to license an SSTO engine?

How about SpaceX? Right now, to advance its strategy of licensing SABRE, the company has a derivative design called the Scimitar and bills it as already being 50% funded by the EU to bring intercontinental travel at Mach 5 to the world at large. Now, this would certainly help big airlines make more profits by flying trans-oceanic routes more often in theory, but in practice, the really, really burdensome regulations against supersonic travel thanks to the kind of NIMBYism which played a major role in preventing the supersonic travel revolution predicted by many futirists, as well as the lead time to finish, test, and prove these planes in operation, Reaction Engines may as well forget about Skylon for the next several decades. If it wants to raise money and interest for a spaceplane, it should focus on creating a spaceplane and selling the Scimitar to militaries as the child of the successful SABRE. Yes, SpaceX is working on its Dragon capsule for sending humans to the ISS, and it has rockets capable of getting there, but if it can offer rocket launches to deliver larger spacecraft into orbit, ready for a Skylon to deliver the crew, it can build a major competitive advantage. An extra 20 or 30 tons of cargo capacity can help enable a less spartan mission beyond Earth orbit, and Dragon could be an emergency habitat in deep space.

We should no longer have just one launch stack for sending humans into space, but instead, we need to mix and match our technology for optimal results. Doing heavy lifting with rockets while the orbit is given to SSTO craft and inflatable space stations for staging, assembly, research, or all of the above, is probably our best way to steadily expand upward into space. So maybe Elon Musk should consider working with Reaction Engines in the near future. The investment wouldn’t be small and returns on it won’t be quick, but they’ll not only be an investment in furthering how far SpaceX can go and what it can do for its clients, but also an investment in the infrastructure of the dawning space tourism and exploration industry. And judging from many proposals for the future of NASA and space travel in general, he’s rather likely to find deep-pocketed and willing partners to make it all work. After all, sticking to space capsules and heavy lift rockets for almost everything would be a huge technological step back to doing what we know rather than using all our past skills to build something for the future. Why should we circle back now, especially when there’s promising technology to make it happen just waiting for people with a big vision and the resources to make it come together, especially at a profit when all is said and done?

mystery astronaut

As long time readers know, I’m a sucker for a good counter-intuitive think piece and pretty much every professional blogger knows that to start a big debate and draw a crowd, you need a view way out of left field once in a while to mix things up. But the really big catch for posts like these, especially in science and tech, is that they need to be based on sound criticism and have logical consistency and flow. This is why Morozov’s rebellion against TED was spot on while the attempt at a shot across the bow of human spaceflight programs by Srikanth Saripalli in Future Tense is basically a train wreck of an argument. Unlike Morozov, Saripalli isn’t willing or able to explore or engage with the issues he brings up, and his grasp of some very basic technological concepts comes off as shoddy at best. He even veers off into Singularity territory to argue for that future robotic probes will be smarter and uses transhumanism as an excuse to ground astronauts. The whole thing was so badly written that I was dead sure Saripalli must have been a journalist with exactly zero STEM credentials, but shockingly, he’s actually a robotics researcher at ASU.

Maybe he’s a terrific robotics person, but it certainly doesn’t get conveyed in his piece because much of it is spent on rehashing the very same claims from Kurzweil and his disciples that I have debated time and time again on this blog. From promises of digital immortality to artificial minds that can out-think all of humanity, Saripalli parrots it all with zero caveats or skepticism and then barrels right ahead to transhumanist effots in life extension to declare the future of our bodies to be very much uncertain, and thus reason enough to replace astronauts with robots. Then, after seemingly providing for cyborg space exploration he never returns to the topic again, wandering off to the current buzzword in bleeding edge robotics, evolving robot networks. Yes, they’re very awesome and their potential is mind-blowing. But put light years between them and you’re going to have to radically rethink how they could be deployed and used. Though you know what, we’re getting ahead of ourselves here. Let’s come back to his sneaky misuse of transhumanism…

Given that the future of our bodies is uncertain, it makes more sense to send robots with intelligence to other planets and galaxies. Nature has built us a certain way—we are best-suited for our planet "Earth." Future space explorers will quickly realize that the human body is not the perfect machine for these environments. We will also want to explore other planets such as Venus and maybe even think about living on those planets. Rather than make those planets habitable, does it not make sense to purposefully evolve ourselves such that we are habitable in those worlds?

You know, this attitude is surprisingly common in Singularitarian and transhumanist circles, and there’s a widespread disdain for human spaceflight as simulations and beaming one’s mind in a laser beam across the universe in a hypothetical future are praised as the solutions to the issue of our biology’s limitations in space. The problem is that beaming yourself around the cosmos is not only biologically implausible, but the physics and orbital mechanics don’t work out either. So while it’s true that we actually should send cyborgs into space, something for which I argued in a few articles on Discovery News, we’re not going to send human minds to ready made bodies, or disembodied brains ala Project Kronos to wander through space. Even less desirable is trying to evolve to live on an alien world as if evolution can be directed on cue and we aren’t better off as the generalists we currently are. We want to upgrade our bodies to survive alien environments, but we don’t want to do it just so we get stuck on another planet all over again, which is what the question seems to propose. Ignoring this line of debate, Saripalli then lunges into robotics.

Several articles in popular press have argued that humans on the moon have produced far more scientific data than the robots on Mars. While this is true, the robots that have been used till now are not at all "autonomous" or "intelligent" in any sense. […] Indeed, we are very far from having autonomous robots on planetary missions, but such machines are being built in university labs every day. Robot Magellans (with scientific skills to boot) could be here long before colonists take off for Mars.

There are two problems with this train of thought. Powerful, intelligent robots are extremely hard to build when you’re going to send them to other planets because physics is the universe’s Buzz Killington when it comes to boldly going into the final frontier. It comes down primarily to weight and power placing some very harsh limitations on how smart our machines can be. I can think of ways to make them much smarter, hypothetically speaking, but all of them involve humans and a lunar or orbital base with giant clean rooms and heavily shielded supercomputers. And while I’m not a gambling man beyond playing with a few bucks in Vegas between shows or attractions, I’d be willing to bet that even the smarter machines we’ll build in the next half century will not totally eliminate the need for human guidance, strategy, and corrections. Our robots will be our trusted help and we’ll use them to do jobs we can’t, but they’ll in no way replace astronauts, just make a very tough job easier and allow us to cram even more science into a mission. But Saripalli plays dirty when it comes to astronauts, summoning politics to rid the space program of humans…

Contrary to popular belief, there never has been a groundswell of popular support from the general public for the space program. Even during the Apollo era, more people were against the space program than for it. Getting robots into space costs a lot less than humans and is safer —so we can keep the space program going without creating budgetary battles.

Yes, it’s true that despite today’s near sacred status of the Apollo missions, people just wanted the government to beat those commie bastards and go home at the time you could turn on your TV and see humans walking on another world. This is what killed the lunar program and future plans for the launch stack, and arguably, what ails NASA to this day. However, you can’t argue that space probes don’t face the scorn of politicians when budgets are being decided since they pretty much loathe all science spending as wasteful, and despite singing praises to science and technology, much of the public doesn’t understand the people who do science or engineering in any way, shape, or form, and really don’t care to. Take quick a look at all the snide dismissals of Curiosity as a colossal waste of $2.5 billion and tell me with a straight face that you’re not going to get budgetary battles by sending robots instead of humans. Of course none of this can get in the way of Saripalli’s rosy view of a galaxy buzzing with our networked robotics along with a huge flop that makes me wonder if he actually understands distributed computing.

While NASA is interested in sending big missions with large robots to accomplish tasks, I believe future robots will be smaller, “distributed,” and much cheaper. To understand this, let us look at the current computing environment: We have moved from supercomputers to using distributed computing; from large monolithic data warehouses to saving data in the cloud; from using laptops to tablets and our smartphones.

All right, let’s stop right there for a minute. We did not go from large monolithic data warehouses to saving data in the cloud. We went from large monolithic data warehouses to even larger data warehouses that are basically a modern riff on mainframes. As explained before, the cloud isn’t magic, it’s just a huge set of hard drives in enormous buildings housing the modern equivalents of what mainframes were originally developed to do at a much higher level of complexity. To say that the cloud is different from a data warehouse is like saying that we moved from penicillin to antibiotics. Maybe he means something completely different than what came out, but since this isn’t a piece from a professional blogger trying to submit five articles a day, he probably wrote it, proofread it, and reviewed it multiple times before submitting it, and had plenty of chances to fix this sort of major error. Unfortunately, the continuation of his thought uses this factually incorrect assertion as the linchpin for his vision of robotic space exploration, which just makes it worse.

The future of space exploration is going to be the same—we will transition from large, heavy robots and satellites to “nanosats” and small, networked robots. We will use hundreds or thousands of cheap, small "sensor networks" that can be deployed on planetary bodies. These will form a self-organizing network that can quickly explore areas of interest and also organize themselves into larger machines that can mine metals or develop new vehicles for future exploration.

Let’s get something straight here, people at NASA are pretty damn smart. They prefer fairly big missions because they’re easier to power, easier to coordinate than many small ones, and can do more science when they reach their destinations. Thousands of tiny bots means very limited power supplies to instruments and many expensive pings between them. Factor in the distances involved in space travel and you’ll spend most of your time waiting to hear back from other bots, while a large, integrated system already got the job done. These are not things that will improve with new technology. There are hard limits on how small logic gates can be and how fast lasers and radio signals can travel, and changing these limits would require a different universe rather than a different manufacturing process or communication technique. It only really makes sense to distribute these robot networks across a single planetary body overseen by humans who had a number of modifications to their bodies to help deal with the alien environment. And there are reasons beyond efficiency for sending humans into space on a regular basis.

Humans are natural explorers, our minds are wired to wonder from birth. If we’re going to try and explore the universe, we need to do more than send our robotic proxies and stay on Earth. And as was mentioned a few times in the comments to Saripalli’s post, there’s a huge psychological effect of going into space. Seeing the entire Earth as a blue marble floating in the void makes a lot of astronauts extremely aware of just how mindlessly, ignorantly petty some 95% of the stuff that we bicker about with no end in sight, really is. We can’t expect to end political battles about things that seem huge to us here but mean nothing in the grand scheme of things when we take into account where and who we actually are just by flying politicians to space. But if we are more and more involved in space travel, we’ll get a much broader perspective. We’re one species, on one planet, wasting lifetimes arguing about magic sky people and their wishes for us, and on all sorts of petty spats about what is and isn’t ours on a tiny blue ball spinning in space. And when we finally let that sink in, maybe, we’ll devote a little more time to something far more important, like advancing ourselves. Sending robots to take our place in space only delays that.

[ illustration by Ian Wilding ]

valles marineris

Despite the flimsy plans and questionable premise of the Mars One project, there are now tens of thousands of people who signed up to possibly die on another planet and only a few of them will be chosen for the reality show style mission. Which is still many years away from being ready in any way, shape or form. But as would-be colonists are preparing to leave Earth behind for an alien tundra, one of the big things going overlooked is their mental health, according to a post featured in The Guardian. No, no one’s implying that the applicants are not in their right mind to sign up for a once in a lifetime trip, literally, but that their psyche is in serious danger because a number of studies on human behavior in isolation, under scruitiny, and in confined spaces for a long period of time point to a very high probability of boredom, depression, and anxiety. And the last thing you want a space colonist to be is bored, depressed, and agitated. That’s when really, really bad things can happen and with no one to intervene, they can spiral out of control while a shocked audience powerlessly watches from up to 140 million miles away. This would make for an unforgettable night of TV, but it’s certainly wouldn’t make for a good mission to Mars.

As I recently argued, this is why we need spacious, almost luxury spacecraft if we want to really explore the solar system and beyond. We want our astronauts to be stimulated and have every possible comfort of home. The excitement of a mission to another planet would be powerful, but it’s only going to last so long until the monotony of a long trip takes over and all the experiments and chores turn into tedious tasks on a checklist. We need interplanetary internet with Netflix as well as games, the ability to leave messages to friends and loved ones on Earth at any time, the schedule should a lot for weekends, and the habitats should allow for both communal areas, and big private spaces to counter the feeling of being confined. Certainly this sounds like a wish list of a spoiled teenager rather than necessities for astronauts, but astronauts are humans too and we need to take care of their mental health while they’re doing things no human has ever done, and exploring places no human has ever been. Considering that they’re trying to build a city in an icy, poisonous, alien desert, is trying to give them a way to play Halo or surf the web really an unjustifiable luxury, especially if it will keep them from possibly developing a mental illness?

[ illustration by Tiago da Silva ]

space station concept

Not too long ago, Ars ran an article detailing proposals for modifying the proven and successful hardware built for Apollo for flyby missions to Venus and Mars.None of these plans are new by any means because they were actually made in the 1970s, when the lunar program was coming to an end and NASA’s big wigs wanted to show Congress and the American people how far their flagship spacecraft could go. Of course we know that nothing ever came form these plans, but in recent times, the Mars One idea, and the Inspiration Mars project, seem to be planned in much the same vein. Let’s use what we have, make the crew as comfortable as we can in an austere ship for about two years or so, and do some attention-grabbing missions to show we can do the kinds of things emerging space powers can only dream of attempting one day. As the sage and endlessly quotable Mark Twain once said, history might not repeat itself but it does rhyme and in the case of rushed, crewed flybys of other planets, the second go-around is likely to end like the first: we talk about it and nothing gets done because the ideas are just too rough and costly.

I have to say though, the notions of explorers cramped in tiny vessels braving the harshness of space in the name of our species’ progress have a romantic ring to them. But for the majority of the population, this is going to be something for someone else to do. If more people could work on space exploration and actually travel into space as a part of their job to clean up space junk, launch and repair scientific probes or spy satellites, and even go beyond to mine valuable parts of asteroids, allowing us to tap into the immense resources of the solar system, wouldn’t you see a lot more support for the space program? I’ve written more than I can count about the benefits of investing in space travel and exploration, from medical, to engineering, to energy generation, but the bottom line is that people have to see an immediate benefit to them from the program to pressure politicians to invest; a benefit like potential careers in space. For that to happen, we’re going to need to think beyond flybys and short excursions with long travel times. We’re going to need to think about launching interplanetary space stations with artificial gravity and a whole lot of creature comforts to help astronauts do their jobs and have fun as they’re traveling.

You could argue that we’d have no shortage of would-be explorers willing to travel to Pluto in a rusty, old, sardine can if given a chance, and you’d be right. But odds are, most of them will not be qualified to make that trip and the ones who do will face mental challenges for which we can’t really prepare them. Consider NASA’s latest astronaut class. Out of 1,500 applicants, only eight have been deemed worthy of living in a space station in LEO. What do you think will be the rate of selection for deep space travelers in spartan conditions for years on end with no hope of help from Earth in the event of emergency? We shouldn’t be focused on finding tougher people and billionaires who want to throw technology built for brief orbital travel into interplanetary space. It won’t help us in the long run. We should be focused on developing efficient and powerful means of propulsion, large, comfortable spacecraft, and setting up self-sufficient ready-to-go-anywhere ecosystems that will let us launch more people in space, keep them there longer with less risk to their muscles and bones, and enable them to do more and more jobs there.

Would the price tag be high? Absolutely. But the trade-off is that we could tell more than one in roughly a million people that they’re astronaut material and we have a job for them. Now, space travel would still be challenging, even with a lot of attention paid to the amenities, but it will make long term exploration missions more viable and generate more spin-offs we can apply right back on Earth while testing new generations of materials, medical devices, genetic engineering, and cyborg technologies for applications in space. We’ve been treating the Final Frontier as fodder for philosophy and romanticism for a little too long. We need to start seeing it as a business and an investment in new industries vying to make a real world difference, and old industries that will once again be needed to work as full capacity after they’re upgraded to meet the demands of a new space-faring age. As I said before, I can think of no nation that ever went bankrupt investing in science, technology, and education. But many have collapsed when they tried to cover for the shortfalls of their economy with bread, circuses, war, and zero-sum political brinkmanship…

Project Kronos, the short fake documentary by visual effects artist Hasraf ‘HaZ’ Dulull about first contact and the possible origins of interplanetary travel by humans in the relatively near future, recently got plenty of attention on the web. And it should have. It’s a well done piece of work, its premise is developed enough to keep you glued to the screen, and its pacing and storyline are open ended and somewhat disturbing enough to provoke a lot of speculation. As a piece of art, this is really, really good. But before anyone gets ideas about sending our artificially reanimated brains in spherical vessels to roam the cosmos in a dream-like state, I’m afraid that a skeptic will need to step in to do some fact checking on the science regardless of how well Project Kronos was put together. Considering that I’m in one of the key fields involved, it may as well be me, so let’s unpickle some flying cosmic brains and figure out whether you really want to analyze fuzzy dreams on your way to meet an alien intelligence trying to summon you to the stars.

Believe it or not, mapping the neurons responsible in remembering what someone saw could be done, and there’s been some success in trying to see what another person has seen by looking through his memories. With enough time and more accurate devices, it’s not implausible to get much better resolution, maybe even as good as some of the fuzzy images of the brain implanted into the Kronos probe. But then again, you’re spending hundreds of millions, if not billions to get to interstellar space. Don’t you want extremely powerful high resolution images taken with crystal clarity so scientists can study what the probe gleams on flyby? Don’t you want a sensor array to measure everything from the solar wind to atmosphere of the gas giants’ moons? The film’s very ambitious space agency basically decided to take a shortcut to nearly human equivalent AI with an actual human brain, then launched it into deep space bereft of the tools to make the probe a source of good data for planetary scientists, focusing instead of establishing first contact based on the idea that a human brain would handle aliens better than a recording. But would it?

One of the more disconcerting things for me in the documentary is the notion of the brain kept alive after the person using is has presumably died of natural causes. Now, as someone who’d happily donate his body to science after I’m done using it, on the one hand, I would welcome the opportunity of being essentially resurrected as a space probe. In fact, on the surface, it sounds like one of my wildest dreams come true. To be brought back to life in some form and launched to travel the stars for eons on end. The concept is poetic, really. But the reality? Not so much. It would be the most extreme kind of sensory deprivation you could imagine. Yes, you could travel the cosmos and see planets no one has even seen before, but for the vast majority of the trip, you’d be surrounded by silent blackness. No friends, no family, very little interaction from Earth, and most of said interaction would be one way. Your thoughts and memories would be decoded and played back like a movie, complete with images of the life you once lead. What you have to look forward to is eons of solitary confinement in a completely alien environment.

Of course this is presuming that your brain will still be usable after death. Unlike the machine, it will deteriorate. Over time its functions will degrade, memories would be difficult to keep, and the probe will grow less and less reliable. Add this to the isolation it will experience and any aliens in range of a Kronos orb will more than likely be trying to make contact with an entity suffering from mental illness and with rapidly deteriorating cognitive abilities. At this point, a recording would be much more preferable. Now, you might wonder if the brain in a Kronos probe would actually live in any real sense. After all, it is just being zapped with a little electricity and given some nutrients so it can function but it’s not really embodied anymore and kept in a dream-like state. The film is not really clear on this point, oscillating between the scientists treating the brain as a substrate, and indicating that it would be capable of an emotional response, meaning that it may be sort of alive in a conventional sense. Maybe this is why the Human 2.0 project meant to respond to the alien attempt at first contact uses a fleet of probes. Maybe they’ll keep each other sane.

Still, note that first contact happens after aliens hack a human brain in robot form. That’s a very disconcerting feat. It means that the extraterrestrial life form either managed to figure out binary protocols for our electronics and how they map to analog buzz produced by our neurons, or had a machine capable of doing that. More than likely, they’ve either done it before or developed an absolutely amazing grasp on how to decipher brain machine interfaces in other species. They’d have to basically torture the brain in Kronos to figure this out from scratch, not on purpose, but they would more or less have to wire into the orb and zap the brain to see what happens so the inference map for how it works could be built. Does sending a hundred more Kronos probes to the coordinates they provided seem like a good idea in this light? Certainly not to me. Seems a tad dangerous to put it mildly. Sure it’s first contact, but with what and why? I could imagine this encounter suddenly diverting trillions around the world into building a heavily armed space fleet just in case, should the memories of the Kronos brain give the aliens too much information.

But all this aside, I can understand what Project Kronos was trying to show. Humans, as we are today, are more or less marooned on Earth. We’re not ready to live in deep space until we start to change ourselves through genetic engineering and significant augmentation, until we defeat aging as we know it and learn how to encase our bodies in materials that will keep us save from radiation and let us stand on other worlds without worrying about toxic chemicals, radiation, and the bone, joint, and muscle damage from changing gravities. The odds of us being brains in tiny orbs floating through the vastness of space are non-zero, especially if bean counters have their way with the future of space travel, but it’s not the best way to explore the final frontier. No, the best way forward for us is roaming space stations, vast interstellar ships, and cyborg bodies. It’s our need to be social, our embodiment, and our sense of community and adventure that define us, and if we want to boldly go into interstellar space, we need to carry them with us. That and a lot of weapons in case random aliens start giving us trouble by trying to hack into our brains…

approach to mars

According to Wired’s laundry list of technical and political issues with getting humans to Mars by the year 2030 or so, exploring another planet many millions of miles away won’t be Apollo 2.0 in many ways. It will be an order of magnitude more expensive per launch, require 30 months for a round trip, and needs to be financed, overseen, and executed by an international group that will include space agencies and ambitious aerospace companies with plans and launch vehicles of their own. And yet, the designs being drawn up sound remarkably like Apollo on steroids. We’re basically working with the same basic mission plans we had in the 1980s with a few workarounds for handling fuel and oxygen. Come on folks, this is another planet. It’s not just a status symbol and we don’t need to rush there just to say we went. Really, we don’t. Flag planting is great for propaganda and PR purposes, but it’s disastrous for long term exploration, which needs to be a very boring, consistent, and yes, expensive effort. We need a better plan than this.

Now, as much as this blog will support my assertion that I’m all about space exploration and will go as far as to advocate augmenting humans to travel into deep space (which led to numerous arguments with the Singularity Institute’s fellows), we don’t have to go to Mars as soon as we’re able to launch. It’s been there for 4.5 billion years. It’s not going anywhere for at least another five billion, and we owe it to ourselves to do it right. This is why instead of sending a much bigger capsule or an updated ISS for a 30 month round trip, we need to send inflatable, rotating space stations powered by small nuclear reactors. Instead of landers, we need to send self-assembling habitats. Instead of going to Mars to stick a flag into the ground, collect rocks, and do some very brief and limited experiments to look for traces of organic compounds, we need to commit to an outright colonization effort, and we need to test the basics on the Moon before we go. We won’t fulfill our dreams of roaming the stars and living on alien worlds if we don’t get this right.

Yes, it sounds downright crazy to propose something like that, especially thanks to the political climates of today. And it is. But at the risk of repeating myself, when we have trillions of banks to erase their bad bets from the books and nothing to aid the paltry budgets of space agencies or labs working on the technology of the future, the issue isn’t money. It’s priorities, vision, and will, and today’s politicians have the first one skewed, and more often than not either lack the other two, or envision our society going backwards as if this is a good thing. And we can keep right on placating ourselves by saying that we’ll at least get to roam around the solar system a bit like we did once, but that’s not how we should be exploring space. We know it’s not. if you want to really reach out into space, you go in for the long term with your eye on the spin-offs and benefits that will rain down from massive, ambitious, integrated projects that try to do what’s never been done before not by reinventing the wheel, but by attaching said wheel to a new airplane.