how to shield yourself in a vacuum, sci-fi style

For an instant spacesuit, just add plasma or electrons. But don't stay in it for too long...
plasma ball

In a fair bit of science fiction, we see advanced alien species use some sort of shielding to walk around other planets or survive being ejected into space. Something around them flickers and a protective invisible bubble is raised, protecting them from a horrible death by dehydration as all the fluid in their bodies effectively boils away. As it turns out, that’s actually possible. So far it’s only been done with fruit fly and mosquito larvae, but we apparently know how to create a shield from extreme conditions, capturing water and necessary gases trapped in a field of electrons or plasma. All you have to do is take a specimen into an electron scanning microscope and send a shower of electrons or a plasma beam at your target. The electrons and ions envelop the living specimen, creating a little, almost skin-tight biodome that contains just enough air for it to move and otherwise keep very obviously living for about an hour. So, you might ask, electromagnetic spacesuits for everybody? Well, no, not exactly. There are a few really important caveats.

First and foremost, the specimens are being irradiated, and the more powerful the shielding has to be, the more radiation it requires to organize itself. Humans could get radiation poisoning as their suits are being beamed onto them, or at least risk extremly dangerous exposure levels. But if you think a little cancer is worth it, there’s the issue of being trapped with your air supply. With no scrubbers, your respiration would produce dangerous level of carbon dioxide and you would die of hypoxia after about 45 minutes to an hour or so, depending, of course, on your breathing and how much of an air supply you initially had. And now might be a good time to mention that a spacesuit created by nothing but charged particles wasn’t the original goal of the research, the idea was to insulate insects so their movements could be studied in the vacuum of the electron microscope’s sample chamber, so there’s not going to be a team working on these issues in the near or far future. But at least we now know that there really is something to the electromagnetic shielding we see in sci-fi all the time, even though it would make for a lousy spacesuit…

See: Takaku, Y., et al. (2013). A thin polymer membrane, nano-suit, enhancing survival across the continuum between air and high vacuum PNAS DOI: 10.1073/pnas.1221341110

# science // physics / radiation / scientific research

  Show Comments